Friday, June 7, 2019

Determining the position of unknown element X in the Reactivity Series Essay Example for Free

Determining the position of unheard-of divisor X in the Reactivity Series EssayTo determine the position of Element X in the reactivity seriesHypothesisThe reactivity series is the arrangement of elements consort to their reactivity. The most labile element is placed at the top and the least reactive at the bottom. The elements at the top can displace elements below them from their immixsIn the experiment, element X impart either have elements to a greater extent reactive or less reactive or both. Based on this, the position of the unknown element can be found out. Assuming that the element given is not thousand, then potassium will displace X from its compound consequently we can say that potassium is more reactive than X and X is below potassium in the reactivity series. Assuming that copper is less reactive than X X will displace copper from its compound. This means that X is higher(prenominal) than copper in the reactivity series than copper.In the experiment, the en thalpy (temperature) interpolate will also show how reactive element X is. For example if X is right higher up zinc in the reactivity series i.e. element X is aluminium, then the temperature difference between reacting Al with CuSO4 will be more than reacting Al with ZnSO4 or FeSO4. This is because as the distance ( subroutine of elements in between between) the elements increases at that place is more difference in the reactivity level of the selected elements.When ?H (?Heat) is +ve, the reaction taking place is exothermal and when ?H is -ve, the reaction will be endothermic. When the number of element between the elements reacting is more, then ?H of the reaction will also be more. For example if we take Zinc as element X, then Zinc is more reactive than Lead but Zinc is even more reactive than Copper. This is because Copper is further below Lead in the reactivity series. so a reaction between Zinc and a Copper compound will be more reactive ( will have a higher ?H) than a r eaction between Zinc and Lead.When ?E (? postcode) is +ve, the reaction taking place is endothermic and when ?E is -ve, the reaction will be exothermic. The reason lavatory the nature of ?H stated previously is the ?E (?Energy) of the reaction. Again more the number of elements between the reactants (according to the Reactivity Series) the unhorse the value of ?E i.e. more exothermic the reaction is. This is due to the type of confederations present in various compounds. Taking the pervious example, a reaction between Zinc a Copper compound will give a lower ?E than a reaction between Zinc a Lead compound. Thus such reactions are more apparent.VariablesIndependentThe Metal Compound used to react with Element XThe metal compound used to react with Element X was varied as this variation of the metal will help us determine the position of element X.DependentWhether a reaction takes place or notWhen contrasting metal compounds are used, it is not necessary that a reaction takes pl ace every time. The occurrence of a reaction depends on the metal present in the compound used.Energy Change (?E)?E depends on the compound used. In different compounds there are different types of bonds present and also every bond has a different energy level.Enthalpy Change (?H)?H depends on ?E. If ?E is -ve, then the reaction is exothermic if ?E is +ve, then the reaction will be endothermic.ControlledVolume of the Metal Compound takenThe volume of the metal compound taken must be unplowed constant as varying volumes can affect the final temperature.Size of Element X stripThe size of the strip of Element X must also be kept constant as varying lengths can again affect the final temperature.Apparatus1 Strip of Element X7 Test tubes5ml of CuSO45ml of FeSO45ml of MgSO45ml of PbNO35ml of KSO45ml of AgNO35ml of ZnSO4 routine1. Take a strip of Element X and cut it into 7 equal pieces2. Pour 5ml of CuSO4 into a test tube3. Put a thermometer into unity test CuSO4 and measure the temperat ure4. Now put a piece of Element X into the test tube and measure ?H5. Repeat Steps 3 4 for FeSO4 MgSO4 PbNO3 KSO4 AgNO3 ZnSO4DiagramsResultsCompoundReactionInitial Temperature (C)Final Temperature (C)?H (C)KSO4No21210MgSO4No21210ZnSO4No22220FeSO4No21210PbNO3Yes21222CuSO4Yes22253AgNO3Yes21265GraphDiscussionThe strip of element X given to us was shiny, this indicates that element X is not very reactive. Reactive metals such as aluminium usually form a metal oxide layer on top of them thus losing their luster. When Element X was put in sulphate of potassium (which is a clear solution), the solution remained clear, and the piece of Element X also remained shiny thus indicating no reaction. Element X behaved similarly for sulphates of Magnesium, Zinc Iron.A piece of Element X into PbNO3, after a lot of time, the solution started to become cloudy (white precipitate), indicating a reaction. In this reaction the ?H was +1C.In CuSO4, the piece of Element X was deposited with black precip itate all over. Also the solution becomes lighter blue as compared to the pure CuSO4(aq). It was a very in arrears process.In AgNO3, the solution turned cloudy (black) immediately after suspending the piece of Element X.If we observe the table below carefully, we notice that Element X did not react with K, Mg, Zn and Fe. But it reacted with Pb, Cu Ag. This means that element X is Sn because the reactivity series goes as follows K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb, Cu, Ag, Au.CompoundChemical EquationEnergy Equation?EKSO4(aq)MgSO4(aq)ZnSO4(aq)FeSO4(aq)Pb(NO3)2(aq)CuSO4(aq)AgNO3(aq)As I stated in my hypothesis, that the further apart the elements are (in the Reactivity Series) the lower the ?E is. This means that the reactions are more apparent (vigorous) and also more heat is produced in such reactions.ConclusionFrom this experiment, I conclude that the Element X given to me is below Iron and above Lead in the reactivity series i.e. the element is Tin. I also conclude that the furthe r apart the elements are (in the Reactivity Series) the higher the ?H and lower the ?E. I also conclude that such reactions are more reactive (apparent) as compared to those between element with a lower number of elements between them. ratingIn this experiment, if the mass of element X would have been measured and then used for reactions the reactions would have been more accurate and reliable.

No comments:

Post a Comment